Lattice Points in High-Dimensional Spheres
The Gauss Circle Problem is a classic open problem in number theory concerning the number of lattice points contained in a large circle.
Optimal error bounds are known in these approximations in a generalization of the Gauss Circle Problem to spheres in dimensions four and above.
In this post, I’ll give a purely analytic proof of this result for even dimensions greater than four, and explain why the method fails in the other cases.