Dirichlet’s Theorem and Sieves

Dirichlet’s Theorem on the infinitude of primes in arithmetic progressions relies on the non-vanishing of non-trivial Dirichlet characters at 1.

In this post, I’ll show how this reduction can be introduced in an intuitive way via sieve theory. If we actually sieve, we obtain estimates for the number of integers whose prime factors lie in given congruence classes.

Read Article →

Sums of Squares and Density

Classification theorems of Euler, Lagrange, and Legendre describe the sets of integers that can be written as the sum of 2, 3, and 4 squares. In the last two cases, it follows easily that the density of these sets are 5/6 and 1.

The question of density is not so simple in the case of two squares. In this post, we resolve using an unexpected tool — Dirichlet’s theorem on primes in arithmetic progressions.

Read Article →