PROBLEMS FROM THE HISTORY OF MATHEMATICS PROBLEM SET #9

DUE FRIDAY, 4/20/2018

Exercise 1. In this problem we prove Thue's Theorem, ie. that the regular hexagonal lattice (in two dimensions) achieves an optimal packing density. Throughout, let Λ be the set of centers of a saturated packing of unit circles in the plane. It may be helpful to refer to the Figure below throughout.

- a. Fix a triangle Δ in a Delauney triangulation of Λ and let θ be the largest angle in Δ . Show that $\theta \geq \frac{2\pi}{3}$ implies that the circumradius of Δ is ≥ 2 . *Hint: Law of Sines*.
- of Δ is ≥ 2 . Hint: Law of Sines.

 b. Assume that $\theta \geq \frac{2\pi}{3}$. Show that the circumcenter of Δ is at least 2 units away from every point in Λ . Why is this a contradiction? Conclude that $\frac{\pi}{3} \leq \theta < \frac{2\pi}{3}$.
- c. Prove that the area of Δ is at least $\sqrt{3}$.
- d. What proportion of the area of the triangle Δ is covered by the unit circles at its vertices? (Your answer will depend on the area of Δ .)
- e. Prove that the optimal packing density in the plane is $\pi/\sqrt{12}$.

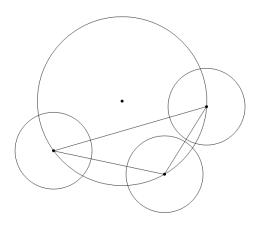


Figure 1. A decidedly obtuse Delauney triangle.

Exercise 2. This exercise will produce an elementary lower bound on $\pi(x)$ which complements the upper bound we established in class. Again, we rely on Legendre's theorem.

a. Prove that

$$n\log 4 \geq \log {2n \choose n} \geq \sum_{p \leq 2n} \left(\left\lfloor \frac{2n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \right) \log p.$$

b. Recall that $\vartheta(x) = \sum_{p \le x} \log p$, in which the sum is extended only over primes. Prove that

$$n \log 4 \ge \sum_{n$$

c. Apply (b) to show $\vartheta(n) \geq n \log 4$. Use this to prove that

$$\pi(n) \ge \frac{n \log 4}{\log n}.$$

Exercise 3. Prove that the following are equivalent:

- a. $\pi(x) \sim x/\log x$
- b. $\vartheta(x) \sim x$
- c. $\psi(x) \sim x$.