PROBLEMS FROM THE HISTORY OF MATHEMATICS PROBLEM SET #8

DUE FRIDAY, 4/13/2018

Exercise 1. Recall the following corollary to Liouville's theorem in differential algebra:

Corollary. Choose $f, g \in \mathbb{C}(x)$ with $f \neq 0$ and g non-constant. Then $f(x)e^{g(x)}$ can be integrated in elementary terms if and only if there exists a **rational** function $R(x) \in \mathbb{C}(x)$ such that R'(x) + g'(x)R(x) = f(x).

- a. Prove that e^x/x has no elementary anti-derivative.
- b. Prove that e^{-x^2} has no elementary anti-derivative.

Exercise 2. In this exercise, we derive a rapidly converging series for $\zeta(2)$ due to Euler (1731).

a. Prove that

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2} = -\int_0^x \frac{\log(1-t)}{t} dt.$$

b. Fix $\alpha \in (0,1)$. Prove that

$$-\int_{\alpha}^{1} \frac{\log(1-t)}{t} dt = \log \alpha \log(1-\alpha) - \int_{0}^{1-\alpha} \frac{\log(1-t)}{t} dt.$$

c. Prove that

$$\zeta(2) = (\log 2)^2 + \sum_{n=1}^{\infty} \frac{2^{1-n}}{n^2}.$$

Exercise 3. Adapt Euler's proof that $\zeta(2) = \frac{\pi^2}{6}$ to find a closed form (involving only powers of π and rational numbers) for $\zeta(4)$.

Exercise 4. Find an Eulerian path (or prove that one does not exist) in the graph presented in Figure 1.

Exercise 5. A Hamiltonian path is a path between two vertices in a graph that visits each vertex exactly once. Compute the number of Hamiltonian paths in the complete graph K_n on n vertices.¹

 $^{{}^{1}}K_{n}$ is the graph on n vertices which includes an edge between any vertex pair.

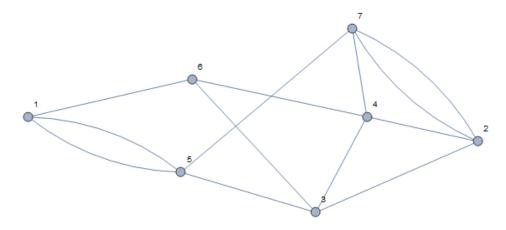


FIGURE 1. The graph for Exercise 4.

Exercise 6. Describe a map on the surface of a torus which cannot be colored using 4 colors. Can you find one that requires 6 or even 7 colors? Hint: It may help to visualize the torus as a square with opposite edges identified.

Exercise 7. Visit the website www.rotopo.com and play the demo version of the game you find there. Continue playing until you recognize that finding Hamiltonian paths is not always trivial.²

 $^{^2{\}rm This}$ isn't a real exercise but you should check out the site anyway!